
OYSTER: An Open Source Entity Resolution System Supporting Identity Information
Management

Yinle Zhou

yxzhou@ualr.edu

John R. Talburt
jrtalburt@ualr.edu

Center for Advanced Research in

Entity Resolution and Information Quality (ERIQ)
University of Arkansas at Little Rock

http://ualr.edu/eriq

Abstract
The paper describes the design and operation of OYSTER, an open source, entity resolution system that
was specifically designed to support identity information management. OYSTER is a script-driven
system that can be configured at run-time to perform record linking, identity resolution, identity capture,
or identity update operations. The system assigns and maintains persistent entity identifiers that can be
used to support master data management (MDM) applications.

Keywords: Identity information management, entity resolution, OYSTER, EIIM

Introduction
Even as Identity Management (IdM) and master data management (MDM) are becoming increasingly
critical components for the security and effectiveness of businesses and government agencies, complete
and effective solutions are still elusive. One of the reasons for this is the gap that currently exists between
entity resolution (ER) systems that focus on one-time or period alignment of identity and the need to
maintain entity identity integrity over time.

For this reason much of the research performed at ERIQ Research Center has focused on building
tools that can support the management of identity information. The ERIQ researchers call this new area
of research Entity Identity Information Management (EIIM). Three existing areas of research and practice
form a context for EIIM. They are entity resolution (ER), master data management (MDM), and identity
management (IdM).

Entity Identity Information Management (EIIM) is the collection and management of identity
information with the goal of sustaining entity identity integrity (Zhou & Talburt, 2011). Entity identity
integrity is one of the basic tenets of data quality that applies to the representation of a given domain of
real-world entities in an information system (Maydanchik, 2007). Entity identity integrity has also been
described as proper representation (Huang, Lee, & Wang, 1999). Entity identity integrity requires that

• Each real-world entity in the domain has one and only one representation in the information
system;

• Distinct real-world entities have distinct representations in the information system.

Figure 1: The Role of EIIM

Figure 1 shows the important position EIIM serves as the connection between ER and MDM, which

in turn supports IdM. Whereas ER is the process of determining whether two references to real-world
objects in an information system are referring to the same object, or to different objects (Talburt, 2011).

Components of EIIM
A high-level view of EIIM components and processes is shown in Figure 2

Figure 2: EIIM Components and Interactions

The labeled items in Figure 2 are described as follows (Zhou & Talburt, 2011)
1. The fundamental goal of EIIM is to effect entity identity integrity which is essentially to maintain

a one-to-one correspondence between the entity identity structures (EIS) in the information
system and the real-world entities in the domain of interest.

2. References are records in the information system that refer to the real-world entities. They may
also occur in both structured and un-structured formats.

3. In most cases, entity references undergo a number of preparation steps to improve the quality of
the data. These steps may include entity attribute extraction (in the case of unstructured
information), reformatting, standardization, correction, and enhancement.

4. After references have been prepared, the next step is to resolve the references against other
references and also against existing EIS. For any given input reference the resolution process
must decide if that reference is equivalent to any other input reference or a previously created
EIS.

5. In the case that two references or EIS are resolved as equivalent, the transitive closure of
equivalence requires that they be integrated into a single EIS.

IdM	

MDM	

EIIM	

ER	

6. The integration process will create a new EIS from a single input reference when the ER process
is unable to resolve the input reference to any existing EIS. When an input reference resolves to
an EIS, the EIS is updated to include the new information from the reference. In the case that it
resolves to more than one EIS, the reference and EIS are all integrated into a single EIS.

7. As described above, the EIS are also inputs to the resolution process as well as outputs from the
integration process.

8. Perhaps the most important aspect of EIIM is that it is a cyclical process rather than a one-time
process. Just as with any type of information, entity identity information has a life cycle as new
identities are created, updated, combined, and eventually discarded. EIIM systems have a
continual influx of new reference information, and the resolution and integration of these
references will impact the state of entity identity integrity of the system.

9. System configuration has eight modes, which are record-linking mode, identity capture mode,
identity resolution mode, identity update mode, reference-to-reference assertion mode, reference-
to-structure assertion mode, structure-to-structure assertion mode, and structure-split assertion
mode.

 This remainder of this paper focuses on the eight EIIM system configurations and how they are
designed and implemented in an open source entity resolution system (OYSTER) to support EIIM.

EIIM System Configurations
Shown as Process 9 in Figure 2, the system configuration plays an important role in the EIIM design. The
EIIM system configuration defines the input and output elements what the EIIM system is composed of.
The input elements include input reference sources, assertion input, and identity input. The output
elements are link output and identity output. Each configuration has different requirement for these input
and output elements.

Table 1: Eight EIIM System Configurations
 Record-

Linking
Identity-
Capture

Identity-
Resolution

Identity-
Update

RefToRef
Assertion

RefToStr
Assertion

StrToStr
Assertion

StrSplit
Assertion

Reference
Sources

Required Required Required Required Required Required None None

Assertion
Input

None None None None Required Required Required Required

Identity
Input

None None Required Required None Required Required Required

Link
Output

Required Required Required Required Required Required None None

Identity
Output

None Required None Required Required Required Required Required

 Table 1 lists the eight configurations being used in this research and their required input and
output elements. Notation “Req” means the configuration requires that element. Notation “None” means
the configuration does not have this element.
 Record-linking is the basic form of ER which takes input references and produces the link index
that assigns the same identifier for equivalent references. Identity-capture is the starting of the EIIM
process which takes input references and captures the identities to form the identity knowledgebase. The
identity knowledgebase could be updated by identity-update runs, also be used for identity-resolution runs
against with. Record-linking, identity-capture, identity-resolution, and identity-update are inferred
resolution which takes the information from the input references and makes the decision. The last four
configurations in Table 1 are asserted resolution (Zhou & Talburt, 2011) which is when resolution
decisions are made based on knowledge from external sources rather than inferences based on values and
relationships within the system. Assertions override the equivalence rules in the resolution process to
directly create, update, or combine EIS directly. Asserted resolution allows the EIIM process to be

adjusted for drift caused by errors inherent in the inferred resolution process. For most systems not every
false positive or false negative issue can be solved by changing an existing equivalence rule or adding a
new equivalence rule. Even small rule changes designed to solve one particular error can often create
many other unintended errors.

Demonstration of EIIM in OYSTER
OYSTER (Open sYSTem Entity Resolution) is an EIIM system developed by the ERIQ research center.
As this writing, the latest version is OYSTER 3.2, and the source code and documentation are available
from SOURCEFORGE website (http://sourceforge.net/projects/oysterer/). Written in Java, the reference
sources and identity rules used to resolve the references are given by the user in the form of XML scripts.
One advantage of OYSTER over similar systems is its support for identity management. The OYSTER
EIS are also in the form of XML documents that define and retain the identity information captured
during the ER process.

Demonstration context
To set the context of the following examples, assume there is a company named ABC, Inc. trying to
integrate and manage their customer data. These examples will refer to three (synthetic) customer data
files named List_A, List_B, and List_C. For the interested reader, these files can be downloaded online
from the website ualr.edu/eriq/downloads.
 The three customer data files have different subsets of the overall set of identity attributes and the
records themselves are in different formats. List_A contains 94,306 references and is in a comma
delimited file format with quotation marks used as text qualifiers. There are eight attributes in List_A and
they are the

• Unique record identifier (RecID)
• Customer name (Name)
• Customer street address (Address)
• City, state, and zip code of the street address (CityStateZip)
• Customer post office box address (POBox)
• City, state, and zip code of the post office box address (POCityStateZip)
• Customer Social Security Number (SSN)
• Customer data of birth (DOB)

A segment of List_A is shown in Figure 2.a.
 The List_B file contains 100,777 references and the records are in a pipe-delimited format
without a text qualifier character. List_B has ten attributes,

• Unique record identifier (RecID)
• Customer first name (FirstName)
• Customer last name (LastName)
• Street number of the customer’s address (StrNbr)
• Street name of the customer’s address (Address1)
• Second line of customer address (Address2)
• City name of address (City)
• State name of address (State)
• Zip code of address (Zip)
• Customer telephone number (Phone).

A segment of List_B is shown in Figure 2.b.
 The List_C contains 76,059 references in a fixed-length field format. The attributes in List_C
have been sent to ABC by a data provider who did not provide a file layout. It has been left to the IT
employees of ABC to decide where each field starts and ends and the content of each field. A segment of
List_C is shown in Figure 2.c.

Demonstration of Identity-Capture Configuration
 As shown in Figure 2, the data in the three lists have many data quality issues. First of all, they
are in different format. List_A is in comma-delimited format (sometime called comma separated values or
CSV format). It also uses quotation marks as a text qualifier. List_B has a pipe-delimited format without
a text qualifier. List_C is in fixed-length field format and does not provide a field layout. Another
observation is that the attributes are not uniform across the sources. For example, List_A has an attribute
for the full name, but List_B has attributes for first name and last name. There are also some other
obvious data quality issues, such as different punctuation of telephone numbers and social security
numbers. After observing these and other data quality condition in the ABC customer lists, the following
actions are taken for this demonstration before attempting the entity resolution process:

1. Make a best guess at which attributes are in List_C and the starting and ending position of each
one. Even though the List_C did not come with a file layout, it can be inferred from the data
profile reports and through observation of the values and patterns. For example, every value in
the first 7 columns has the pattern “C999999” making it a safe assumption that this represents the
unique record identifier. Similar assumptions can be made on other attributes. The final attribute
names for List_C are
• Unique Record Identifier (RecID)
• Customer First Name (FirstName)
• Customer Middle Name (MiddleName)
• Customer Last Name (LastName)
• Customer Social Security Number (SSN)
• Customer Date of Birth (DOB)
• Customer Telephone Number (Phone)

2. Perform data cleaning and standardization on the three lists. First, parsing and consolidating the
attributes have been done to make the attributes uniform across sources. Next, apply data
standardization and transformations as specified in Table 2.

"RecID","Name","Address","City	
 State	
 Zip",	
 "PO	
 Box","POCity	
 State	
 Zip","SSN","DOB"	

	
 "A953698","antonio	
 v	
 cardona","247H	
 HAHN	
 ST","San	
 Francisco,	
 Cali	
 94134","PO	
 BOX	
 280911","SAN	
 FRANCISCO,	
 CA	
 94128",196-­‐36-­‐
9947,""	

"A989582","ANTONIO	
 V	
 CARDONA","5221	
 ZELZAH	
 AVEN	
 APT219","encin,	
 california	
 91316","PO	
 BOX	
 V19412","encino,	
 ca	

91416",196369974,"1913"	

RecID|FirstName|LastName|StrNbr|Address	
 1|Address	
 2|City|State|Zip|Phone	

B932797|ANTONIO	
 V|CARDONA	
 |19412|APTDO||encino|ca|91416|	
 818-­‐453.1558	

B949439|ANTONIO	
 V|CARDONA	
 |1207|Miljl	
 Way||stockton|ca|95209|(209)318-­‐1443	

C967431	
 ANTONIO	
 V	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 CARDONA	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 196-­‐36-­‐9974	
 1913	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (818)453.1558	

Figure	
 2.a:	
 A	
 segment	
 of	
 List_A	

Figure 2.b: A segment of
List_B

Figure 2.c: A segment of
List_C

Table 2: Standardization operations for some attributes

After the above steps, run the data profiling analysis again. Based on the analysis, the following

identity rules were selected for this example:

Rule 1: FirstName values are the same, the LastName values are the same,
and the SSN values the same

Rule 2: FirstName and LastName values have a Levenshtein rating of 0.80 or more
and the SSN values differ by one transposition of consecutive digits.

Rule 3: FirstName and LastName values have a Levenshtein rating of 0.80 or more
and the StrNbr values are the same.

Rule 4: LastName values have a Levenshtein rating of 0.80 or more and
the last 6 digits of the Phone values are the same.

Rule 5: FirstName values are Nicknames (from nickname list),
LastName values have a Levenshtein rating of 0.80 or more,
and the SSN values differ by one transposition of consecutive digits.

Rule 6: FirstName values are Nicknames (from nickname list),
LastName values have a Levenshtein rating of 0.80 or more,
and the StrNbr values are the same.

 An EIIM process that builds and save the clusters created by a record-linking process is called an
EIIM identity capture configuration. Figure 3 shows an example of two entity identity structures (EIS)
created by an identity capture configuration (Run 1) of OYSTER acting on List_A and List_B using the
identity rules above. Note that each EIS is enclosed in <Identity> element of an XML document <root>.
OYSTER assigns each EIS a unqiue 16 character identifier. The two EIS shown in Figure 3 have the
identifiers EIS “X9KYZ5GOQ5RVHOWV” and “000Z53TVVK0DQXI1”
 Furthermore, Figure 3 also shows that the EIS labeled with “X9KYZ5GOQ5RVHOWV” was
created from two input records from List_A (A953698 and A989582) that matched by Rule 2 (note that
the SSN values have transposed digits). Also note that in order to save storage, the attributes values are in
a compressed, tagged format that is part of the Compressed Document Set Architecture (CoDoSA)
(Talburt & Nelson, CoDoSA: A light-weight, XML framework for integrating unstructured textual
information, 2009). The tags are defined in the <Attributes> section of the document where “A” is the
tag for the unique record identifier (RefID), “B” is the tag for the telephone number (Phone), and so on.

Attribute Standardization
Operations

First
Name

• Change to all Upper
Case

• Remove all non-letter
characters

Last Name
Middle
Name
SSN Remove all non-digit

characters Phone
PO Box Extract the PO Box

Number (Java Program)
State Standardize to two-letter

USPS state code PO State

	

Figure 3: EIS “X9KYZ5GOQ5RVHOWV” and “000Z53TVVK0DQXI1” after Identity Capture (Run 1)

 The EIS labeled with “000Z53TVVK0DQXI1” was created from a single record from List_B
(B932797). The “[@]” given and the Rule value indicates that no rule was used, i.e. the record formed its
own cluster. The same rule coding shows that Record A953698 was the record that originally formed
Cluster “X9KYZ5GOQ5RVHOWV” and that Record A989582 was brought in later because it matched
the first record by Rule 2.
 In addition to creating the EIS structures, OYSTER also produces a standard Link Index that
simply shows the links assigned to each input record processed. Figure 4 shows a segment of the Link
Index with the same records capture in Figure 3.

	

Figure 4: Segment of the Link Index from Run 1

<root>
 <Metadata>
 <Modifications>
 <Modification ID="1" OysterVersion="3.2" Date="2012-03-29 04.51.07" RunScript="Run001" />
 </Modifications>
 <Attributes>
 <Attribute Name="@RefID" Tag="A"/>
 <Attribute Name="Phone" Tag="B"/>
 <Attribute Name="FirstName" Tag="C"/>
 <Attribute Name="StrNbr" Tag="D"/>
 <Attribute Name="LastName" Tag="E"/>
 <Attribute Name="SSN" Tag="F"/>
 </Attributes>

</Metadata>
<Identities>

 <Identity Identifier="X9KTZ5GOQ5RVHOWV" CDate="2012-03-29">
 <References>
 <Reference>
 <Value>A^ListA.A953698|C^ANTONIOV|D^247H|E^CARDONA|F^196369947</Value>
 <Traces>
 <Trace OID="X9KTZ5GOQ5RVHOWV" RunID="1" Rule="[@]"/>
 </Traces>
 </Reference>
 <Reference>
 <Value>A^ListA.A989582|C^ANTONIOV|D^5221|E^CARDONA|F^196369974</Value>
 <Traces>
 <Trace OID="X9KTZ5GOQ5RVHOWV" RunID="1" Rule="[2]"/>
 </Traces>
 </Reference>
</References>
 </Identity>
 <Identity Identifier="000Z53TVVK0DQXI1" CDate="2012-03-29">
 <References>
 <Reference>
 <Value>A^ListB.B932797|B^8184531558|C^ANTONIOV|D^19412|E^CARDONA</Value>
 <Traces>
 <Trace OID="000Z53TVVK0DQXI1" RunID="1" Rule="[@]"/>
 </Traces>
 </Reference>
 </References>
 </Identity>
 </Identities>
…
</root>

Demonstration of Identity-Update Configuration
Beyond standard record-linking processes, EIIM systems also have the capability to add and modify EIS
originally built in a previous process, an EIIM configuration called identity update. Figure 5 shows an
EIS originally created in Run 1 of OYSTER that has been updated when the EIS from Run 1 were run
against List_C in an identity update configuration (Run 2) of OYSTER. In particular it shows the EIS
labeled “000Z53TVVK0DQXI1” that also appears in Figure 3, and is an EIS that was created from a
single record in Run 1.

	

Figure 5: EIS “000Z53TVVK0DQXI1” after Identity Update (Run 2)

 The story of how this EIS was updated can be read in the <Traces> elements in the EIS. Of the
four records now in EIS “000Z53TVVK0DQXI1”, two were originally in EIS
“X9KTZ5GOQ5RVHOWV” created in Run 1. The other was Record B932797 that originally created
EIS “000Z53TVVK0DQXI1” in Run 1. What has happened is that Record C967431 from List_C
matched a record in each both of these EIS, Record A953698 by Rule 2 (name and transpose SSN) and
Record B932797 by Rule 4 (name and phone). Because of this both EIS and the new record have been
merged into a single EIS that has retained the label “000Z53TVVK0DQXI1”. Even though there is now
no longer an EIS with the label “X9KTZ5GOQ5RVHOWV” there is a record of its existence in the

<root>
 <Metadata>
 <Modifications>
 <Modifications>
 <Modification ID="1" OysterVersion="3.2" Date="2012-03-29 04.51.07" RunScript="Run001" />
 <Modification ID="2" OysterVersion="3.2" Date="2012-03-29 07.14.44" RunScript="Run002" />
 </Modifications>
 </Modifications>
 …

</Metadata>
<Identities>

 <Identity Identifier="000Z53TVVK0DQXI1" CDate="2012-03-29">
 <References>
 <Reference>
 <Value>A^ListA.A953698|C^ANTONIOV|D^247H|E^CARDONA|F^196369947</Value>
 <Traces>
 <Trace OID="X9KTZ5GOQ5RVHOWV" RunID="1" Rule="[@]"/>
 <Trace OID="000Z53TVVK0DQXI1" RunID="2" Rule="[2]"/>
 </Traces>
 </Reference>
 <Reference>
 <Value>A^ListA.A989582|C^ANTONIOV|D^5221|E^CARDONA|F^196369974</Value>
 <Traces>
 <Trace OID="X9KTZ5GOQ5RVHOWV" RunID="1" Rule="[2]"/>
 <Trace OID="000Z53TVVK0DQXI1" RunID="2" Rule="[2]"/>
 </Traces>
 </Reference>
 <Reference>
 <Value>A^ListB.B932797|B^8184531558|C^ANTONIOV|D^19412|E^CARDONA</Value>
 <Traces>
 <Trace OID="000Z53TVVK0DQXI1" RunID="1" Rule="[@]"/>
 </Traces>
 </Reference>
 <Reference>
 <Value>A^ListC.C967431|B^8184531558|C^ANTONIO|E^CARDONA|F^196369974</Value>
 <Traces>
 <Trace OID="000Z53TVVK0DQXI1" RunID="2" Rule="[4, 2]"/>
 </Traces>
 </Reference>
</References>
 </Identity>

 </Identities>
…
</root>

<Trace> elements that record that the two records originally had that label in Run 1, but in Run 2 were
merged into their current EIS.

Demonstration of Structure-to-Structure Assertion Configuration
As discussed earlier, there is a limit to accuracy of the clustering that can be obtained through the use of
identity rules. Because these rules infer equivalence based on the information present in the records, they
can only be as accurate as the information provided.

Figure 6: EIS “KKJYKI0WR7JXQUAO” from Structure-to-Structure (Run 3)

<root>
 <Metadata>
 <Modifications>
 <Modification ID="1" OysterVersion="3.2" Date="2012-03-29 04.51.07" RunScript="Run001" />
 <Modification ID="2" OysterVersion="3.2" Date="2012-03-29 07.14.44" RunScript="Run002" />
 <Modification ID="3" OysterVersion="3.2" Date="2012-04-02 21.50.55" RunScript="Run003" />
 </Modifications>

….
</Metadata>

<Identity Identifier="KKJYKI0WR7JXQUAO" CDate="2012-03-29">
 <StrToStr>
 <OID>000Z53TVVK0DQXI1</OID>
 </StrToStr>
 <References>
 <Reference>
 <Value>A^ListA.A953698|C^ANTONIOV|D^247H|E^CARDONA|F^196369947</Value>
 <Traces>
 <Trace OID="X9KTZ5GOQ5RVHOWV" RunID="1" Rule="[@]"/>
 <Trace OID="000Z53TVVK0DQXI1" RunID="2" Rule="[2]"/>
 <Trace OID="KKJYKI0WR7JXQUAO" RunID="3" Rule="[@AssertStrToStr]"/>
 </Traces>
 </Reference>
 <Reference>
 <Value>A^ListA.A989582|C^ANTONIOV|D^5221|E^CARDONA|F^196369974</Value>
 <Traces>
 <Trace OID="X9KTZ5GOQ5RVHOWV" RunID="1" Rule="[2]"/>
 <Trace OID="000Z53TVVK0DQXI1" RunID="2" Rule="[2]"/>
 <Trace OID="KKJYKI0WR7JXQUAO" RunID="3" Rule="[@AssertStrToStr]"/>
 </Traces>
 </Reference>
 <Reference>
 <Value>A^ListB.B932797|B^8184531558|C^ANTONIOV|D^19412|E^CARDONA</Value>
 <Traces>
 <Trace OID="000Z53TVVK0DQXI1" RunID="1" Rule="[@]"/>
 <Trace OID="KKJYKI0WR7JXQUAO" RunID="3" Rule="[@AssertStrToStr]"/>
 </Traces>
 </Reference>
 <Reference>
 <Value>A^ListB.B949439|B^2093181443|C^ANTONIOV|D^1207|E^CARDONA</Value>
 <Traces>
 <Trace OID="KKJYKI0WR7JXQUAO" RunID="1" Rule="[@]"/>
 </Traces>
 </Reference>
 <Reference>
 <Value>A^ListC.C967431|B^8184531558|C^ANTONIO|E^CARDONA|F^196369974</Value>
 <Traces>
 <Trace OID="000Z53TVVK0DQXI1" RunID="2" Rule="[4, 2]"/>
 <Trace OID="KKJYKI0WR7JXQUAO" RunID="3" Rule="[@AssertStrToStr]"/>
 </Traces>
 </Reference>
</References>
</Identity>
…
</Identities>
</root>

 Another type of resolution that is based on external knowledge that two records or two EIS are
equivalent is called asserted resolution. Rather than inferring equivalence, the equivalence is known to be
true. For example, a customer may self-report to ABC Company that he or she has moved and changed
mailing addresses, thus making a connection between two different EIS for this customer. The EIIM
system was not able to infer the connection because there was not enough evidence in the records to know
that it was the same customer at two different addresses.
 Figure 6 shows the EIS as example of where this same thing has happened in the ABC customer
information. It turns out that in Run 1 there was another EIS labeled “KKJYKI0WR7JXQUAO” built
from Record B949439 for the customer named “Antonio Cardona” living at an address with street number
“1207”. The EIS “000Z53TVVK0DQXI1” shown in Figure 5 also has the name “Antonio Cardona”, but
living at an address with street number “19412” (Record B932797). When Mr. Cardona reported his
change of address to an ABC Customer Representative, she discovered the two different EIS in the
system and set out to correct this false negative error by using an assertion.
 The OYSTER system supports four types of assertions, reference-to-reference assertion,
reference-to-structure assertion, structure-to-structure assertion, and structure-split assertion. In this case
since both EIS (structures) already existed, the form of assertion used was structure-to-structure. The
representative simply gave the command (Run 3) to OYSTER to merge EIS “000Z53TVVK0DQXI1”
into EIS “KKJYKI0WR7JXQUAO”. The result of that assertion is shown in Figure 6. The EIS
“KKJYKI0WR7JXQUAO” now contains five records, the original Record B949439 this EIS plus the
four records that were previously in EIS “000Z53TVVK0DQXI1”. Again the <Trace> elements show
that in Run 3, these four records were merged migrated into their current EIS by the Rule code
“[@AssertStrToStr]” which is the code that indicates a structure-to-structure assertion.

Conclusion
ER has long been recognized as a key process in support of data cleaning for removing duplicate records
and in data integration as a way to aggregate information for the same entity across different information
sources. Typically the final step is to select one best example (survivor or exemplar record) from each
cluster of equivalent records, discard the duplicate records, and pass the results to the next process. The
EIIM research expands the scope of the traditional one-time ER processing to maintaining identity
information and persistent identifiers. The goal of EIIM is to achieve entity identity integrity which is a
key process required for MDM. EIIM research also provides practical guidance to ER and EIIM system
designers. The most recent versions of OYSTER incorporate major EIIM design elements and has been
successfully used to support EIIM in a number of pilot projects.

References
Huang, K.-T., Lee, Y. W., & Wang, R. Y. (1999). Quality Information and Knowledge Management.

Prentice Hall.
Maydanchik, A. (2007). Data Quality Assessment. Bradley Beach, NJ: Technics Publications.
Talburt, J. (2011). Entity Resolution and Information Quality. Burlington, MA: Morgan Kaufmann.
Talburt, J., & Nelson, E. (2009). CoDoSA: A light-weight, XML framework for integrating unstructured

textual information. 15th Americas Conference on Information Systems (p. Paper 489). San
Francisco, CA: AIS Electronic Library .

Zhou, Y., & Talburt, J. (2011). The Role of Asserted Resolution in Entity Identity Management. The 2011
International Conference on Information and Knowledge Engineering (IKE'11). Las Vegas,
Nevada: (accepted for publication).

Zhou, Y., & Talburt, J. R. (2011). Entity Identity Information Management. Proceedings of the 16th
International Conference on Information Quality(ICIQ-11), (pp. 327-341). Adelaide, Australia.

	

